LymeNet Home LymeNet Home Page LymeNet Flash Discussion LymeNet Support Group Database LymeNet Literature Library LymeNet Legal Resources LymeNet Medical & Scientific Abstract Database LymeNet Newsletter Home Page LymeNet Recommended Books LymeNet Tick Pictures Search The LymeNet Site LymeNet Links LymeNet Frequently Asked Questions About The Lyme Disease Network LymeNet Menu

LymeNet on Facebook

LymeNet on Twitter




The Lyme Disease Network receives a commission from Amazon.com for each purchase originating from this site.

When purchasing from Amazon.com, please
click here first.

Thank you.

LymeNet Flash Discussion
Dedicated to the Bachmann Family

LymeNet needs your help:
LymeNet 2020 fund drive


The Lyme Disease Network is a non-profit organization funded by individual donations.

LymeNet Flash Post New Topic  New Poll  Post A Reply
my profile | directory login | register | search | faq | forum home

  next oldest topic   next newest topic
» LymeNet Flash » Questions and Discussion » Medical Questions » Probable Congenital Babesiosis in Infant, New Jersey, USA

 - UBBFriend: Email this page to someone!    
Author Topic: Probable Congenital Babesiosis in Infant, New Jersey, USA
Vermont_Lymie
Frequent Contributor (1K+ posts)
Member # 9780

Icon 1 posted      Profile for Vermont_Lymie     Send New Private Message       Edit/Delete Post   Reply With Quote 
This full article is available as a PDF at:

http://www.cdc.gov/EID/content/15/5/788.htm

Dispatch

Probable Congenital Babesiosis in Infant, New Jersey, USA

Emerging Infectious Diseases
Volume 15, Number 5-May 2009


Sonia Sethi, David Alcid, Hemant Kesarwala, and Robert W. Tolan, Jr.
Author affiliations: The Children's Hospital at Monmouth Medical Center, Long Branch, New Jersey, USA [S. Sethi]; Saint Peter's University Hospital, New Brunswick, New Jersey, USA [D. Alcid, H. Kesarwala, R.W. Tolan, Jr.]; Robert Wood Johnson Medical School, New Brunswick [D. Alcid]; and Drexel University College of Medicine, Philadelphia, Pennsylvania, USA [H. Kesarwala, R.W. Tolan, Jr.]

Abstract

Only 2 neonates with transplacentally or perinatally acquired [congenital] babesiosis have been reported.

We describe a probable third congenital case of babesiosis in a 26-day-old infant; transmission was determined on the basis of a blood smear from the infant [15% parasitemia] and serologic results from the infant and mother.

Victor Babes first described the pathogen of babesiosis in 1888 [1].

Babesiosis is a tick-borne malaria-like illness transmitted by the same Ixodes spp. ticks that transmit Borrelia burgdorferi [2].

It is endemic to the northeastern and northwestern United States and also occurs in Europe and parts of Asia.

Babesiosis is an intraerythrocytic parasitic infection that ranges from subclinical to severe [possibly fatal] disease with fever, thrombocytopenia, hemolytic anemia, and hyperbilirubinemia.

Appropriate antimicrobial drug therapy, transfusion, and exchange transfusion remain the mainstays of treatment.

Babesiosis occurs rarely among neonates, although it is gaining increasing attention as an emerging tick-borne zoonosis.

In 1987, Esernio-Jenssen et al. [3] reported an apparent case of transplacentally or perinatally transmitted congenital babesiosis. In 1997, New et al. [4] reported another case.

We describe a third case of probable congenital babesiosis in a 26-day-old infant with 15% parasitemia.

She was treated successfully with atovaquone [Mepron; GlaxoSmithKline, Research Triangle Park, NC, USA] and azithromycin [Zithromax; Pfizer, New York, NY, USA].

The Case

A 26-day-old, 8-pound, full-term infant girl was transferred to Saint Peter's University Hospital for evaluation of fever and hyperbilirubinemia.

For 1 week, she was not feeding well and was gagging and irritable. On the day of admission, her mother noted fever and yellow eyes.

The mother [a migrant crop worker] reported having had an uneventful pregnancy, labor, and delivery, except for having been bitten by 2 ticks at 8 months' gestation while picking crops in New Jersey.

She did not seek treatment. The mother had not traveled elsewhere in the United States during her pregnancy.

Knowledge about earlier travel to Babesia-endemic areas would have been helpful in understanding the mother's infection, but this information was unavailable.

The infant had no history of tick exposure; she had been outdoors only for visits to the pediatrician.

Physical examination showed an alert but pale infant weighing 4.4 kg; her temperature was 101.8�F [38.7�C], pulse rate 160/min, respiratory rate 36/min, blood pressure 90/40 mm Hg, and oxygen saturation 99% while breathing room air. Her conjunctivae were icteric.

Her liver and spleen were palpable 4 cm and 5 cm below their respective costal margins.

No hemorrhagic lesions or tick bites were noted. The rest of her physical examination findings were unremarkable except for a diaper rash.

Figure:Figure. Giemsa-stained [A] and Wright-stained [B] peripheral blood smear from a newborn with probable Babesia microti infection...

Initial laboratory findings included a hemoglobin level of 8.8 g/dL [indices within normal limits]; leukocyte count of 9.0/mm3 with 3% bands, 18% neutrophils, 72% lymphocytes, 7% monocytes; and platelet count of 34,000/mm3.

Blood chemistry concentrations included total and indirect bilirubin 5.9 mg/dL [reference range 0.1-1.2 mg/dL]; alanine aminotransferase 18 IU/L; aspartate aminotransferase 53 IU/L; alkaline phosphatase 108 IU/L; blood urea nitrogen 6 mg/dL; creatinine 0.3 mg/dL; and C-reactive protein 54 mg/dL [reference range 1.0-10.0 mg/dL].

Peripheral blood smear demonstrated evidence of hemolysis and was consistent with Babesia microti infection [although B. duncani is indistinguishable from B. microti on peripheral smear] and ≈15% parasitemia [Figure].

Subsequently, the infant's lactate dehydrogenase concentration was found to be 1,912 IU/L [reference range 313-618 IU/L] and later rose to 2,535 IU/L [Table 1].

The infant's Babesia immunoglobulin [Ig] G and IgM titers by immunofluorescent antibody [IFA], which are genus specific but not species specific, were 256 [reference <16] and 40 [reference <20], respectively [both tests were performed by Quest Diagnostics-Nichols Institute, Chantilly, VA, USA].

Lyme IgG Western blot plus 2 Lyme IgM Western blots, performed early during hospitalization and just before discharge, were negative.

The mother's peripheral blood smear did not show any parasites, but her Babesia IgG and IgM titers by IFA were >1,024 and 80, respectively, and her Lyme serology was positive. The mother refused additional testing.

Despite the variability in sensitivity and specificity of commercially available serologic tests [particularly the IFA for Babesia IgM], Babesia serologic results were not confirmed at a reference laboratory. Species-specific PCR was not performed.

After concluding that this infant had probable congenital babesiosis, we began treating her with oral atovaquone [40 mg/kg/d] in 2 divided doses and azithromycin [12 mg/kg/d] once per day.

The infant received 1 transfusion with packed red blood cells on hospital day 3 because of continued hemolysis, but she did not require exchange transfusion despite having a high initial parasite count. The infant's parasitemia decreased rapidly, and she responded well to treatment [Table 1].

She was discharged after 8 days and was to complete a 10-day course of atovaquone and azithromycin [which were well tolerated]; she was subsequently lost to follow-up.

Conclusions

Of 10 cases of babesiosis in neonates that have been reviewed [5], 2 were congenital [3,4], 2 were transmitted by a tick bite [6], and 6 were associated with transfusions [5,7-9].

The 2 congenital cases [3,4] are compared to our probable congenital case [Table 2].

All 10 of the affected neonates were reported to have <9% parasitemia [5].

The illness ranged from no symptoms in 2 infants transfused with contaminated blood [8] to symptomatic disease [as in our infant] with fever and hepatosplenomegaly in 5 of 7 [71%], hemolytic anemia in 8 of 10 [80%], indirect hyperbilirubinemia in 4 of 5 [80%], and thrombocytopenia in 7 of 9 [78%] [5].

Five of 8 [63%] patients required erythrocyte transfusion [5]. The infant we describe had all of these manifestations as well as a higher parasite count than described previously [5].

Clearly, the spectrum of neonatal babesiosis is variable and must be more fully elucidated, as must determinants of the illness's clinical course and parasite clearance. In neonates, the degree of parasitemia may not parallel the severity of the babesiosis.

The combination of quinine sulfate and clindamycin hydrochloride for treatment of a newborn with transfusion-associated babesiosis was described in 1982 and subsequently became the first accepted treatment [7].

A combination of azithromycin with atovaquone for 7 to 10 days has emerged as an alternative regimen [8,10-11], having been used successfully in 2 neonates [8,10] and several adults [11] in whom it appears to be safe and effective.

Finally, the addition of azithromycin or atovaquone to the clindamycin hydrochloride plus quinine sulfate regimen has been proposed [2,8], particularly if parasitemia is slow to resolve.

Recently, our understanding of babesiosis and the methods of testing for it have improved dramatically.

Because babesiosis [and congenital babesiosis] is an emerging tick-borne zoonosis, it is worthwhile to review the state-of-the-art approach to its diagnosis in the context of the limitations to diagnosis inherent in this particular case, including its retrospective nature, the mother's lack of insurance and resultant unwillingness to undergo any additional laboratory testing, and the loss to follow-up of the infant and her migrant family.

Diagnosis of congenital babesiosis requires definitive evidence of babesiosis, including evidence from reference laboratory species-specific IFA testing, PCR confirmation, and evidence from reference laboratory evaluation of peripheral blood smears, particularly blood smears with high parasitemia [necessary because of the numerous species of Babesia endemic to the United States, including B. microti, B. divergens-like, B. duncani, MO-1, CA-1, and WA-1].

Accurate diagnosis also requires collection of extensive epidemiologic information about patients with suspected infections, including their recent and remote travel history, exposure to ticks, transfusion or transplant.

Follow-up for recrudescence is important, particularly for the immunocompromised patient.

Our report of a probable third case of congenital babesiosis illustrates the variability in the manifestations and clinical course of the illness, suggesting a need for improvement in how the disease is recognized and for evaluation of current treatment modalities.

Dr Sethi is a pediatric resident at The Children's Hospital at Monmouth Medical Center in Long Branch, New Jersey. She is interested in pediatric cardiology.

Posts: 2557 | From home | Registered: Aug 2006  |  IP: Logged | Report this post to a Moderator
Dekrator48
Frequent Contributor (5K+ posts)
Member # 18239

Icon 1 posted      Profile for Dekrator48     Send New Private Message       Edit/Delete Post   Reply With Quote 
Very interesting and I am happy to see that this is published for all to see.

It confirms even more what we already knew.

Thank you for posting it.

--------------------
The fibromyalgia I've had for 32 years was an undiagnosed Lyme symptom.

"For I know the plans I have for you", declares the Lord, "plans to prosper you and not to harm you, plans to give you hope and a future". -Jeremiah 29:11

Posts: 6076 | From Pennsylvania, USA | Registered: Nov 2008  |  IP: Logged | Report this post to a Moderator
bettyg
Unregistered


Icon 1 posted            Edit/Delete Post   Reply With Quote 
on page 2, up to read tomorrow
IP: Logged | Report this post to a Moderator
Pinelady
Frequent Contributor (5K+ posts)
Member # 18524

Icon 1 posted      Profile for Pinelady     Send New Private Message       Edit/Delete Post   Reply With Quote 
I am sorry she was lost to follow up.

--------------------
Suspected Lyme 07 Test neg One band migrating in IgG region
unable to identify.Igenex Jan.09IFA titer 1:40 IND
IgM neg pos
31 +++ 34 IND 39 IND 41 IND 83-93 +
DX:Neuroborreliosis

Posts: 5850 | From Kentucky | Registered: Dec 2008  |  IP: Logged | Report this post to a Moderator
bettyg
Unregistered


Icon 1 posted            Edit/Delete Post   Reply With Quote 
vermont, thanks so much for breaking this up as much as you did.

went to site; left promptly ... those page long 1 paragraphs....uffda !! [tsk]

IP: Logged | Report this post to a Moderator
Vermont_Lymie
Frequent Contributor (1K+ posts)
Member # 9780

Icon 1 posted      Profile for Vermont_Lymie     Send New Private Message       Edit/Delete Post   Reply With Quote 
Thanks Betty for bumping it up!

Yes, it does confirm what we already know, and gives more evidence on the congenital tick-borne diseases.

I find this line incredible:

"The mother [a migrant crop worker] reported having had an uneventful pregnancy, labor, and delivery, except for having been bitten by 2 ticks at 8 months' gestation while picking crops in New Jersey."

I am guessing that this woman does not have health insurance, and that she was lost to follow-up because she is a migrant crop worker.

If she was picking crops in NJ while 8 months pregnant, she is probably low-income as well as having no insurance. And her lyme blood test was positive, but she did not have any treatment!

This is an awful situation -- can you imagine how many migrant crop workers in the northeast get tick bites and are exposed to lyme and co-infections?

Many speak only Spanish, and probably do not get adequate warning about ticks and lyme, but they are out in the fields for hours each day.

And in this case, they concluded that the baby did not have lyme due to a negative blood test [Frown]

I hope this problem gets more research, and that they warned this woman to treat her lyme disease.

Posts: 2557 | From home | Registered: Aug 2006  |  IP: Logged | Report this post to a Moderator
   

Quick Reply
Message:

HTML is not enabled.
UBB Code� is enabled.

Instant Graemlins
   


Post New Topic  New Poll  Post A Reply Close Topic   Feature Topic   Move Topic   Delete Topic next oldest topic   next newest topic
 - Printer-friendly view of this topic
Hop To:


Contact Us | LymeNet home page | Privacy Statement

Powered by UBB.classic™ 6.7.3


The Lyme Disease Network is a non-profit organization funded by individual donations. If you would like to support the Network and the LymeNet system of Web services, please send your donations to:

The Lyme Disease Network of New Jersey
907 Pebble Creek Court, Pennington, NJ 08534 USA


| Flash Discussion | Support Groups | On-Line Library
Legal Resources | Medical Abstracts | Newsletter | Books
Pictures | Site Search | Links | Help/Questions
About LymeNet | Contact Us

© 1993-2020 The Lyme Disease Network of New Jersey, Inc.
All Rights Reserved.
Use of the LymeNet Site is subject to Terms and Conditions.