LymeNet Home LymeNet Home Page LymeNet Flash Discussion LymeNet Support Group Database LymeNet Literature Library LymeNet Legal Resources LymeNet Medical & Scientific Abstract Database LymeNet Newsletter Home Page LymeNet Recommended Books LymeNet Tick Pictures Search The LymeNet Site LymeNet Links LymeNet Frequently Asked Questions About The Lyme Disease Network LymeNet Menu

LymeNet on Facebook

LymeNet on Twitter




The Lyme Disease Network receives a commission from Amazon.com for each purchase originating from this site.

When purchasing from Amazon.com, please
click here first.

Thank you.

LymeNet Flash Discussion
Dedicated to the Bachmann Family

LymeNet needs your help:
LymeNet 2020 fund drive


The Lyme Disease Network is a non-profit organization funded by individual donations.

LymeNet Flash Post New Topic  New Poll  Post A Reply
my profile | directory login | register | search | faq | forum home

  next oldest topic   next newest topic
» LymeNet Flash » Questions and Discussion » Medical Questions » What You Eat Affects Your Genes

 - UBBFriend: Email this page to someone!    
Author Topic: What You Eat Affects Your Genes
Dave6002
Frequent Contributor (1K+ posts)
Member # 9064

Icon 1 posted      Profile for Dave6002     Send New Private Message       Edit/Delete Post   Reply With Quote 
What You Eat Affects Your Genes: RNA from Rice Can Survive Digestion and Alter Gene Expression


RNAs from rice can survive digestion and make their way into mammalian tissues, where they change the expression of genes.

What�s the News: It�s no secret that having lunch messes with your biochemistry. Once that sandwich hits your stomach, genes related to digestion have been activated and are causing the production of the many molecules that help break food down. But a new study suggests that the connection between your food�s biochemistry and your own may be more intimate than we thought. Tiny RNAs usually found plants have been discovered circulating in blood, and animal studies indicate that they are directly manipulating the expression of genes.

What�s the Context:
MicroRNAs, or miRNAs, are molecules involved in regulation of gene expression, the transcription of genes into proteins. miRNAs bind to the messenger RNAs that ferry genetic information from DNA to the ribosomes, which translate messenger RNAs into proteins.

When a miRNA binds a messenger RNA, it keeps it from being translated, thus preventing that gene from being expressed.

How the Heck:
This team of researchers at Nanjing University had been studying the miRNAs that circulate in human blood and were surprised to find that some of the miRNAs weren�t homegrown but instead came from plants. One of the most common plant miRNAs was from rice, a staple of their Chinese subjects� diets. Intrigued, they confirmed with a variety of tests in mice that the miRNA, which, in its native environs, usually regulates plant development, was definitely coming from food.

When they put the rice miRNA in cells, they found that levels of a receptor that filters out LDL, aka �bad� cholesterol, in the liver went down. As it turned out, the miRNA was binding to the receptor�s messenger RNA and preventing it from being expressed, sending receptor levels down and bad-cholesterol levels up. They saw the same effect when they tried it mice.

Going further, when they fed rice to mice but also gave them a molecule that would turn off the miRNA, the liver receptor bounced back and bad cholesterol levels went down.

The team concludes that miRNAs may be a new class of functional components in food, like vitamins or minerals�even in an animal that�s pretty far removed from their home organism, they can manipulate gene expression and have an effect on nutrition.

The Future Holds:
It�s only logical that what we eat has an effect on the expression of our genes, in the general sense that nutrients from food are involved in cellular processes that control and are controlled by gene expression. But this is an unusually direct route, and surprising from an organism that�s so different from mammals.
Since miRNAs from plants haven�t been on scientists� radar before, this should be a field ripe for further exploration. Do corn miRNAs circulate in the blood of people in societies that eat gigantic quantities of corn, like the US? What receptors might those miRNAs control?

Reference: Zhang, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, (20 September 2011) | d

Posts: 1078 | From Fairland | Registered: Apr 2006  |  IP: Logged | Report this post to a Moderator
   

Quick Reply
Message:

HTML is not enabled.
UBB Code� is enabled.

Instant Graemlins
   


Post New Topic  New Poll  Post A Reply Close Topic   Feature Topic   Move Topic   Delete Topic next oldest topic   next newest topic
 - Printer-friendly view of this topic
Hop To:


Contact Us | LymeNet home page | Privacy Statement

Powered by UBB.classic™ 6.7.3


The Lyme Disease Network is a non-profit organization funded by individual donations. If you would like to support the Network and the LymeNet system of Web services, please send your donations to:

The Lyme Disease Network of New Jersey
907 Pebble Creek Court, Pennington, NJ 08534 USA


| Flash Discussion | Support Groups | On-Line Library
Legal Resources | Medical Abstracts | Newsletter | Books
Pictures | Site Search | Links | Help/Questions
About LymeNet | Contact Us

© 1993-2020 The Lyme Disease Network of New Jersey, Inc.
All Rights Reserved.
Use of the LymeNet Site is subject to Terms and Conditions.