LymeNet Home LymeNet Home Page LymeNet Flash Discussion LymeNet Support Group Database LymeNet Literature Library LymeNet Legal Resources LymeNet Medical & Scientific Abstract Database LymeNet Newsletter Home Page LymeNet Recommended Books LymeNet Tick Pictures Search The LymeNet Site LymeNet Links LymeNet Frequently Asked Questions About The Lyme Disease Network LymeNet Menu

LymeNet on Facebook

LymeNet on Twitter




The Lyme Disease Network receives a commission from Amazon.com for each purchase originating from this site.

When purchasing from Amazon.com, please
click here first.

Thank you.

LymeNet Flash Discussion
Dedicated to the Bachmann Family

LymeNet needs your help:
LymeNet 2020 fund drive


The Lyme Disease Network is a non-profit organization funded by individual donations.

LymeNet Flash Post New Topic  New Poll  Post A Reply
my profile | directory login | register | search | faq | forum home

  next oldest topic   next newest topic
» LymeNet Flash » Questions and Discussion » Medical Questions » paper abstracts on the effects of infrared radition on the skin

 - UBBFriend: Email this page to someone!    
Author Topic: paper abstracts on the effects of infrared radition on the skin
Dave6002
Frequent Contributor (1K+ posts)
Member # 9064

Icon 1 posted      Profile for Dave6002     Send New Private Message       Edit/Delete Post   Reply With Quote 
LED photoprevention: Reduced MED response following multiple LED exposures



Author(s): Barolet D (Barolet, Daniel), Boucher A (Boucher, Annie)
Source: LASERS IN SURGERY AND MEDICINE Volume: 40 Issue: 2 Pages: 106-112 Published: FEB 2008


Abstract: Background and Objectives: As photoprotection with traditional sunscreen presents some limitations, the use of non-traditional treatments to increase skin resistance to ultraviolet (UV) induced damage would prove particularly appealing. The purpose of this pilot study was to test the potential of non-thermal pulsed light-emitting diode (LED) treatments (660 nm) prior to UV exposure in the induction of a state of cellular resistance against UV-induced erythema.

Study Design/Materials and Methods: Thirteen healthy subjects and two patients with polymorphous light eruption (PLE) were exposed to 5, 6, or 10 LED treatments (660 nm) on an EXPERIMENTAL anterior thigh region. Individual baseline minimal erythema doses (MED) were then determined. UV radiation was thereafter performed on the LED EXPERIMENTAL and CONTROL anterior thigh areas. Finally, 24 hours post-UV irradiation, LED pre-treated MED responses were compared to the non-treated sites.

Results: Reduction of erythema was considered significant when erythema was reduced by > 50% on the LED-treated side as opposed to CONTROL side. A significant LED treatment reduction in UV-B induced erythema reaction was observed in at least one occasion in 85% of subjects, including patients suffering from PLE. Moreover, there was evidence of a dose-related pattern in results. Finally, a sun protection factor SPF-15-like effect and a reduction in post-inflammatory hyperpigmentation were observed on the LED pre-treated side.

Conclusions: Results suggest that LED based therapy prior to UV exposure provided significant protection against UV-B induced erythema. The induction of cellular resistance to U-V insults may possibly be explained by the induction of a state a natural resistance to the skin via specific cell signaling pathways and without the drawbacks and limitations of traditional sunscreens. These results represent an encouraging step towards expanding the potential applications of LED therapy and could be useful in the treatment of patients with anomalous reactions to sunlight.

Posts: 1078 | From Fairland | Registered: Apr 2006  |  IP: Logged | Report this post to a Moderator
Dave6002
Frequent Contributor (1K+ posts)
Member # 9064

Icon 1 posted      Profile for Dave6002     Send New Private Message       Edit/Delete Post   Reply With Quote 
Infrared-A radiation-induced matrix metalloproteinase 1 expression is mediated through extracellular signal-regulated kinase 1/2 activation in human dermal fibroblasts

Schieke SM, Stege H, Kurten V, Grether-Beck S, Sies H, Krutmann J
Source: JOURNAL OF INVESTIGATIVE DERMATOLOGY Volume: 119 Issue: 6 Pages: 1323-1329 Published: DEC 2002


Abstract: In addition to ultraviolet radiation, human skin is exposed to infrared radiation from natural sunlight as well as artificial ultraviolet and infrared irradiation devices used for therapeutic or cosmetic purposes. The molecular consequences resulting from infrared exposure are virtually unknown. In this study we have investigated whether infrared has the capacity to affect gene expression in human skin cells. Exposure of cultured human dermal fibroblasts to infrared in the range of 760-1400 nm (infrared-A) induced the expression of matrix metalloproteinase 1 at the mRNA and protein level in a time- and concentration-dependent manner. Expression of tissue inhibitor of matrix metalloproteinase 1 remained unaltered. These effects were not mediated by the generation of heat by infrared-A. Furthermore, infrared-A did not induce heat shock protein 70 expression in human dermal fibroblasts under conditions that increased matrix metalloproteinase 1 expression. Here we provide evidence that infrared-A activated mitogen-activated protein kinase pathways. Extracellular signal-regulated kinase 1/2 and p38-mitogen-activated protein kinase were rapidly activated after infrared-A exposure. The mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD 98059, which specifically blocked the extracellular signal-regulated kinase pathway, prevented infrared-A-induced matrix metalloproteinase 1 expression. Upregulation of matrix metalloproteinase 1 expression by infrared-A was thus shown to be dependent on extracellular signal-regulated kinase 1/2 activation. In conclusion, this study demonstrates that infrared-A is capable of inducing matrix metalloproteinase 1 expression in human dermal fibroblasts via activation of the extracellular signal-regulated kinase 1/2 signaling pathway. This previously unrecognized property of infrared-A points to its possible role in the photoaging of human skin.

Posts: 1078 | From Fairland | Registered: Apr 2006  |  IP: Logged | Report this post to a Moderator
Dave6002
Frequent Contributor (1K+ posts)
Member # 9064

Icon 1 posted      Profile for Dave6002     Send New Private Message       Edit/Delete Post   Reply With Quote 
The role of near infrared radiation in photoaging of the skin

Schroeder P (Schroeder, Peter), Haendeler J (Haendeler, Judith), Krutmann J (Krutmann, Jean)
Source: EXPERIMENTAL GERONTOLOGY Volume: 43 Issue: 7 Pages: 629-632 Published: JUL 2008


Abstract: Infrared (IR) radiation is non-ionizing, electromagnetic radiation with wavelengths between 760 nm and 1 mm, which is further divided into IRA, IRB and IRC. IR accounts for more than half of the solar energy that reaches the human skin. While IRB and IRC do not penetrate deeply into the skin, more than 65% of IRA reaches the dermis. Human skin is increasingly exposed to IRA-radiation; most relevant sources are (i) natural solar radiation consisting of over 30% IRA, (ii) artificial IRA sources used for therapeutic or wellness purposes and (iii) artificial UV sources contaminated with IRA. As part of natural sunlight, IRA significantly contributes to extrinsic skin aging. This article reviews the cutaneous effects of IRA-radiation, the underlying molecular mechanisms and the available protective strategies.

Posts: 1078 | From Fairland | Registered: Apr 2006  |  IP: Logged | Report this post to a Moderator
   

Quick Reply
Message:

HTML is not enabled.
UBB Code� is enabled.

Instant Graemlins
   


Post New Topic  New Poll  Post A Reply Close Topic   Feature Topic   Move Topic   Delete Topic next oldest topic   next newest topic
 - Printer-friendly view of this topic
Hop To:


Contact Us | LymeNet home page | Privacy Statement

Powered by UBB.classic™ 6.7.3


The Lyme Disease Network is a non-profit organization funded by individual donations. If you would like to support the Network and the LymeNet system of Web services, please send your donations to:

The Lyme Disease Network of New Jersey
907 Pebble Creek Court, Pennington, NJ 08534 USA


| Flash Discussion | Support Groups | On-Line Library
Legal Resources | Medical Abstracts | Newsletter | Books
Pictures | Site Search | Links | Help/Questions
About LymeNet | Contact Us

© 1993-2020 The Lyme Disease Network of New Jersey, Inc.
All Rights Reserved.
Use of the LymeNet Site is subject to Terms and Conditions.